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Chapter 3: The Reinforcement Learning Problem

• describe the RL problem we will be studying for the 
remainder of the course

• present idealized form of the RL problem for which 
we have precise theoretical results; 

• introduce key components of the mathematics: value 
functions and Bellman equations;

• describe trade-offs between applicability and 
mathematical tractability

• Some important alternate formulations

Objectives of this chapter: 
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The Agent-Environment Interface

  

Agent and environment interact at discrete time steps :   t = 0, 1, 2, K
     Agent observes state at step t :     st ∈S
     produces action at step t :   at ∈ A(st )
     gets resulting reward :     rt+1 ∈ℜ

     and resulting next state :   st+1

t
. . . st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3 . . .
t +3a
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Policy at step t , πt :
               a mapping from states to action probabilities
               πt (s, a) =  probability that at = a when st = s

The Agent Learns a Policy

• Reinforcement learning methods specify how the agent 
changes its policy as a result of experience.

• Roughly, the agent’s goal is to get as much reward as it 
can over the long run.
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Getting the Degree of Abstraction Right
• Time steps need not refer to fixed intervals of real time.

• Actions can be low level (e.g., voltages to motors), or high level 
(e.g., accept a job offer), “mental” (e.g., shift in focus of attention), 
etc.

• States can be low-level “sensations”, or they can be abstract, 
symbolic, based on memory, or subjective (e.g., the state of being 
“surprised” or “lost”).

• An RL agent is not like a whole animal or robot, which consist of 
many RL agents as well as other components.

• The environment is not necessarily unknown to the agent, only 
incompletely controllable.

• Reward computation is in the agent’s environment because the 
agent cannot change it arbitrarily. 
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Goals and Rewards

• Is a scalar reward signal an adequate notion of a goal?—
maybe not, but it is surprisingly flexible.

• A goal should specify what we want to achieve, not how 
we want to achieve it.

• A goal must be outside the agent’s direct control—thus 
outside the agent.

• The agent must be able to measure success:

• explicitly;

• frequently during its life-span.
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Returns

  

Suppose the sequence of rewards after step t is :
                         rt+1, rt+ 2 , rt+ 3, K
What do we want to maximize?

In general,  

we want to maximize the expected return,  E Rt{ },  for each step t.

Episodic tasks: interaction breaks naturally into 
episodes, e.g., plays of a game, trips through a maze. 

  Rt = rt+1 + rt+2 +L + rT ,
where T is a final time step at which a terminal state is 
reached, ending an episode.
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Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.  

Discounted return:

  

            Rt = rt+1 +γ rt+ 2 + γ
2rt+3 +L = γ krt+ k+1,

k =0

∞

∑
where γ , 0 ≤ γ ≤ 1, is the discount rate.

shortsighted  0 ←γ → 1  farsighted
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An Example

Avoid failure: the pole falling beyond a 
critical angle or the cart hitting end of track.

reward  = +1 for each step before failure
⇒   return =  number of steps before failure

As an episodic task where episode ends upon failure:

As  a continuing task with discounted return:
reward  = −1 upon failure;  0 otherwise
⇒   return is related to  − γ k,  for k steps before failure

In either case, return is maximized by 
avoiding failure for as long as possible.
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Another Example

Get to the top of the hill
as quickly as possible. 

reward  = −1 for each step where not at top of hill
⇒   return =  − number of steps before reaching top of hill

Return is maximized by minimizing 
number of steps reach the top of the hill. 
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A Unified Notation
• In episodic tasks, we number the time steps of each episode 

starting from zero.

• We usually do not have to distinguish between episodes, so 
we write       instead of         for the state at step t of episode j.

• Think of each episode as ending in an absorbing state that 
always produces reward of zero:

• We can cover all cases by writing

st st, j

                                                                Rt = γ krt+k +1,
k =0

∞

∑
where γ can be 1 only if a zero reward absorbing state is always reached.
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• By “the state” at step t, the book means whatever information is 
available to the agent at step t about its environment.

• The state can include immediate “sensations,” highly processed 
sensations, and structures built up over time from sequences of 
sensations. 

• Ideally, a state should summarize past sensations so as to retain all 
“essential” information, i.e., it should have the Markov Property: 
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The Markov Property

  

Pr st +1 = ′ s , rt +1 = r st ,at ,rt , st−1,at−1,K, r1,s0 ,a0{ } =

                                                             Pr st +1 = ′ s , rt +1 = r st ,at{ }
for all ′ s , r, and histories st ,at ,rt , st−1,at−1,K, r1, s0 ,a0. 
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Markov Decision Processes
• If a reinforcement learning task has the Markov Property, it is 

basically a Markov Decision Process (MDP).

• If state and action sets are finite, it is a finite MDP. 

• To define a finite MDP, you need to give:

• state and action sets

• one-step “dynamics” defined by transition probabilities

• reward expectations:

Ps ′ s 
a = Pr st +1 = ′ s st = s, at = a{ }   for all s, ′ s ∈S, a ∈A(s).

Rs ′ s 
a = E rt +1 st = s, at = a, st +1 = ′ s { }   for all s, ′ s ∈S, a∈A(s).
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Recycling Robot 

An Example Finite MDP

• At each step, robot has to decide whether it should (1) 
actively search for a can, (2) wait for someone to bring it a 
can, or (3) go to home base and recharge. 

• Searching is better but runs down the battery; if runs out 
of power while searching, has to be rescued (which is bad).

• Decisions made on basis of current energy level: high, 
low.

• Reward = number of cans collected
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Recycling Robot MDP

  

S = high ,low{ }
A(high) = search , wait{ }
A(low) = search ,wait, recharge{ }   

Rsearch =  expected no. of cans while searching
Rwait =  expected no. of cans while waiting
                     Rsearch > Rwait
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Value Functions

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ } = Eπ γ krt+k +1 st = s
k =0

∞

∑ 
 
 

 
 
 

Action- value function for policy π :

Qπ (s, a) = Eπ Rt st = s, at = a{ } = Eπ γ krt+ k+1 st = s,at = a
k= 0

∞

∑ 
 
 

 
 
 

• The value of a state is the expected return starting 
from that state; depends on the agent’s policy:

• The value of taking an action in a state under policy 
π  is the expected return starting from that state, 
taking that action, and thereafter following π :
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Bellman Equation for a Policy π

  

Rt = rt+1 + γ rt+2 +γ
2rt+ 3 +γ

3rt+ 4L

= rt+1 + γ rt+2 + γ rt+3 + γ
2rt+ 4L( )

= rt+1 + γ Rt+1

The basic idea: 

So: Vπ (s) = Eπ Rt st = s{ }
= Eπ rt+1 + γV

π st+1( ) st = s{ }
Or, without the expectation operator: 

Vπ (s) = π (s, a) Ps ′ s 
a Rs ′ s 

a + γV π( ′ s )[ ]
′ s 
∑

a
∑
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More on the Bellman Equation

Vπ (s) = π (s, a) Ps ′ s 
a Rs ′ s 

a + γV π( ′ s )[ ]
′ s 
∑

a
∑

This is a set of equations (in fact, linear), one for each state.
The value function for π  is its unique solution.

Backup diagrams:

for V π for Qπ
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Gridworld
• Actions: north, south, east, west; deterministic.

• If would take agent off the grid: no move but reward = –1

• Other actions produce reward = 0, except actions that 
move agent out of special states A and B as shown.

State-value function 
for equiprobable 
random policy;
γ = 0.9
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Golf
• State is ball location

• Reward of –1 for each stroke 
until the ball is in the hole

• Value of a state?

• Actions: 

• putt (use putter)

• driver (use driver)

• putt succeeds anywhere on 
the green 
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• For finite MDPs, policies can be partially ordered: 

• There is always at least one (and possibly many)  policies that 
is better than or equal to all the others. This is an optimal 
policy. We denote them all π *.

• Optimal policies share the same optimal state-value function:

• Optimal policies also share the same optimal action-value 
function:

20

π ≥ ′ π     if and only if  Vπ (s) ≥ V ′ π (s)  for all s ∈S

Optimal Value Functions

V∗ (s) = max
π
Vπ (s)    for all  s ∈S

Q∗(s, a) = max
π
Qπ (s, a)  for all  s ∈S and a ∈A(s)

This is the expected return for taking action a in 
state s  and thereafter following an optimal policy.
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Optimal Value Function for Golf
• We can hit the ball farther with driver than with 
putter, but with less accuracy

• Q*(s,driver) gives the value or using driver first, then 
using whichever actions are best
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Bellman Optimality Equation for V*

V∗ (s) = max
a∈A( s)

Qπ ∗

(s,a)

= max
a∈A( s)

E rt +1 + γ V∗(st +1) st = s, at = a{ }
= max

a∈A( s)
Ps ′ s 

a

′ s 
∑ Rs ′ s 

a + γV ∗( ′ s )[ ]

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

The relevant backup diagram: 

     is the unique solution of this system of nonlinear equations.V∗
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Bellman Optimality Equation for Q*

Q∗(s, a) = E rt +1 + γ max
′ a 

Q∗ ( ′ s , ′ a ) st = s,at = a{ }
= Ps ′ s 

a Rs ′ s 
a +γ max

′ a 
Q∗( ′ s , ′ a )[ ]

′ s 
∑

The relevant backup diagram: 

     is the unique solution of this system of nonlinear equations.Q*
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Therefore, given     , one-step-ahead search produces the 
long-term optimal actions.
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Why Optimal State-Value Functions are Useful

V∗

V∗

Any policy that is greedy with respect to       is an optimal policy.

E.g., back to the gridworld:
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What About Optimal Action-Value Functions?

Given      , the agent does not even have to do a one-step-
ahead search:  

Q*

π∗(s) = argmax
a∈A (s)

Q∗(s, a)
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Solving the Bellman Optimality Equation
• Finding an optimal policy by solving the Bellman Optimality Equation 

requires the following:

• accurate knowledge of environment dynamics;

• we have enough space and time to do the computation;

• the Markov Property.

• How much space and time do we need?

• polynomial in number of states (via dynamic programming 
methods; Chapter 4),

• BUT, number of states is often huge (e.g., backgammon has about 
10**20 states).

• We usually have to settle for approximations.

• Many RL methods can be understood as approximately solving the 
Bellman Optimality Equation.
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Average Reward MDPs

• In a discounted MDP, optimal policies depend on 

• The most common alternative is to define return as:

• A policy is called gain-optimal if it optimizes         
over all states

€ 

γ

€ 

ρπ (s) = lim
N→∞

1
N
E rt

t=1

N

∑
 

 
 

 

 
 

where      is the reward received at step t starting in state 
s and following policy π

€ 

rt

€ 

ρπ (s)
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Average Reward cont.
• An MDP is unichain if all trajectories generated by all 

policies end up in the same recurrent class of states

• In a unichain MDP, for all states s and s’

• Bias value, or relative value of s:

• A policy is bias-optimal if it maximizes this value over 
all states

€ 

ρπ (s) = ρπ ( ′ s ) = ρπ

€ 

V π (s) = lim
N→∞

E (rt
t=1

N

∑ −ρπ )
 

 
 

 

 
 

where      is the reward 
received at step t 
starting in state s and 
following policy π

€ 

rt
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Gain-optimal vs. Bias-optimal

A B

100

–100

1

a1:

a2:

Both policies are gain optimal, but only a1 is bias optimal
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Semi-Markov Decision Processes (SMDPs)

• Generalization of an MDP where there is a waiting 
(or dwell) time    in each state

• Transition probabilities generalize to:

• Bellman equations generalize, e.g. for a discrete time 
SMDP: 

€ 

P( ′ s ,τ | s,a)€ 

τ

€ 

V *(s) = max
a∈A (s)

P( ′ s ,τ | s,a) Rs ′ s 
a + γτV *( ′ s )[ ]

′ s ,τ
∑ where       is now the amount of 

discounted reward  expected to 
accumulate over the waiting time 
in s upon doing a and ending up 
in s’ € 

Rs ′ s 
a
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Summary
• Agent-environment interaction

• States

• Actions

• Rewards

• Policy: stochastic rule for 
selecting actions

• Return: the function of future 
rewards agent tries to maximize

• Episodic and continuing tasks

• Markov Property

• Markov Decision Process

• Transition probabilities

• Expected rewards

• Value functions

• State-value function for a policy

• Action-value function for a policy

• Optimal state-value function

• Optimal action-value function

• Optimal value functions

• Optimal policies

• Bellman Equations

• The need for approximation

• Average reward MDPs

• Semi-Markov decision processes
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