
1

Chapter 3: The Reinforcement Learning Problem

• describe the RL problem we will be studying for the
remainder of the course

• present idealized form of the RL problem for which
we have precise theoretical results;

• introduce key components of the mathematics: value
functions and Bellman equations;

• describe trade-offs between applicability and
mathematical tractability

• Some important alternate formulations

Objectives of this chapter:

1

2

The Agent-Environment Interface

Agent and environment interact at discrete time steps : t = 0, 1, 2, K
 Agent observes state at step t : st ∈S
 produces action at step t : at ∈ A(st)
 gets resulting reward : rt+1 ∈ℜ

 and resulting next state : st+1

t
. . . st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3 . . .
t +3a

2

3

Policy at step t , πt :
 a mapping from states to action probabilities
 πt (s, a) = probability that at = a when st = s

The Agent Learns a Policy

• Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

• Roughly, the agent’s goal is to get as much reward as it
can over the long run.

3

4

Getting the Degree of Abstraction Right
• Time steps need not refer to fixed intervals of real time.

• Actions can be low level (e.g., voltages to motors), or high level
(e.g., accept a job offer), “mental” (e.g., shift in focus of attention),
etc.

• States can be low-level “sensations”, or they can be abstract,
symbolic, based on memory, or subjective (e.g., the state of being
“surprised” or “lost”).

• An RL agent is not like a whole animal or robot, which consist of
many RL agents as well as other components.

• The environment is not necessarily unknown to the agent, only
incompletely controllable.

• Reward computation is in the agent’s environment because the
agent cannot change it arbitrarily.

4

5

Goals and Rewards

• Is a scalar reward signal an adequate notion of a goal?—
maybe not, but it is surprisingly flexible.

• A goal should specify what we want to achieve, not how
we want to achieve it.

• A goal must be outside the agent’s direct control—thus
outside the agent.

• The agent must be able to measure success:

• explicitly;

• frequently during its life-span.

5

6

Returns

Suppose the sequence of rewards after step t is :
 rt+1, rt+ 2 , rt+ 3, K
What do we want to maximize?

In general,

we want to maximize the expected return, E Rt{ }, for each step t.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

 Rt = rt+1 + rt+2 +L + rT ,
where T is a final time step at which a terminal state is
reached, ending an episode.

6

7

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

 Rt = rt+1 +γ rt+ 2 + γ
2rt+3 +L = γ krt+ k+1,

k =0

∞

∑
where γ , 0 ≤ γ ≤ 1, is the discount rate.

shortsighted 0 ←γ → 1 farsighted

7

8

An Example

Avoid failure: the pole falling beyond a
critical angle or the cart hitting end of track.

reward = +1 for each step before failure
⇒ return = number of steps before failure

As an episodic task where episode ends upon failure:

As a continuing task with discounted return:
reward = −1 upon failure; 0 otherwise
⇒ return is related to − γ k, for k steps before failure

In either case, return is maximized by
avoiding failure for as long as possible.

8

9

Another Example

Get to the top of the hill
as quickly as possible.

reward = −1 for each step where not at top of hill
⇒ return = − number of steps before reaching top of hill

Return is maximized by minimizing
number of steps reach the top of the hill.

9

10

A Unified Notation
• In episodic tasks, we number the time steps of each episode

starting from zero.

• We usually do not have to distinguish between episodes, so
we write instead of for the state at step t of episode j.

• Think of each episode as ending in an absorbing state that
always produces reward of zero:

• We can cover all cases by writing

st st, j

 Rt = γ krt+k +1,
k =0

∞

∑
where γ can be 1 only if a zero reward absorbing state is always reached.

10

• By “the state” at step t, the book means whatever information is
available to the agent at step t about its environment.

• The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations.

• Ideally, a state should summarize past sensations so as to retain all
“essential” information, i.e., it should have the Markov Property:

11

The Markov Property

Pr st +1 = ′ s , rt +1 = r st ,at ,rt , st−1,at−1,K, r1,s0 ,a0{ } =

 Pr st +1 = ′ s , rt +1 = r st ,at{ }
for all ′ s , r, and histories st ,at ,rt , st−1,at−1,K, r1, s0 ,a0.

11

12

Markov Decision Processes
• If a reinforcement learning task has the Markov Property, it is

basically a Markov Decision Process (MDP).

• If state and action sets are finite, it is a finite MDP.

• To define a finite MDP, you need to give:

• state and action sets

• one-step “dynamics” defined by transition probabilities

• reward expectations:

Ps ′ s
a = Pr st +1 = ′ s st = s, at = a{ } for all s, ′ s ∈S, a ∈A(s).

Rs ′ s
a = E rt +1 st = s, at = a, st +1 = ′ s { } for all s, ′ s ∈S, a∈A(s).

12

13

Recycling Robot

An Example Finite MDP

• At each step, robot has to decide whether it should (1)
actively search for a can, (2) wait for someone to bring it a
can, or (3) go to home base and recharge.

• Searching is better but runs down the battery; if runs out
of power while searching, has to be rescued (which is bad).

• Decisions made on basis of current energy level: high,
low.

• Reward = number of cans collected

13

14

Recycling Robot MDP

S = high ,low{ }
A(high) = search , wait{ }
A(low) = search ,wait, recharge{ }

Rsearch = expected no. of cans while searching
Rwait = expected no. of cans while waiting
 Rsearch > Rwait

14

15

Value Functions

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ } = Eπ γ krt+k +1 st = s
k =0

∞

∑







Action- value function for policy π :

Qπ (s, a) = Eπ Rt st = s, at = a{ } = Eπ γ krt+ k+1 st = s,at = a
k= 0

∞

∑







• The value of a state is the expected return starting
from that state; depends on the agent’s policy:

• The value of taking an action in a state under policy
π is the expected return starting from that state,
taking that action, and thereafter following π :

15

16

Bellman Equation for a Policy π

Rt = rt+1 + γ rt+2 +γ
2rt+ 3 +γ

3rt+ 4L

= rt+1 + γ rt+2 + γ rt+3 + γ
2rt+ 4L()

= rt+1 + γ Rt+1

The basic idea:

So: Vπ (s) = Eπ Rt st = s{ }
= Eπ rt+1 + γV

π st+1() st = s{ }
Or, without the expectation operator:

Vπ (s) = π (s, a) Ps ′ s
a Rs ′ s

a + γV π(′ s)[]
′ s
∑

a
∑

16

17

More on the Bellman Equation

Vπ (s) = π (s, a) Ps ′ s
a Rs ′ s

a + γV π(′ s)[]
′ s
∑

a
∑

This is a set of equations (in fact, linear), one for each state.
The value function for π is its unique solution.

Backup diagrams:

for V π for Qπ

17

18

Gridworld
• Actions: north, south, east, west; deterministic.

• If would take agent off the grid: no move but reward = –1

• Other actions produce reward = 0, except actions that
move agent out of special states A and B as shown.

State-value function
for equiprobable
random policy;
γ = 0.9

18

19

Golf
• State is ball location

• Reward of –1 for each stroke
until the ball is in the hole

• Value of a state?

• Actions:

• putt (use putter)

• driver (use driver)

• putt succeeds anywhere on
the green

19

• For finite MDPs, policies can be partially ordered:

• There is always at least one (and possibly many) policies that
is better than or equal to all the others. This is an optimal
policy. We denote them all π *.

• Optimal policies share the same optimal state-value function:

• Optimal policies also share the same optimal action-value
function:

20

π ≥ ′ π if and only if Vπ (s) ≥ V ′ π (s) for all s ∈S

Optimal Value Functions

V∗ (s) = max
π
Vπ (s) for all s ∈S

Q∗(s, a) = max
π
Qπ (s, a) for all s ∈S and a ∈A(s)

This is the expected return for taking action a in
state s and thereafter following an optimal policy.

20

21

Optimal Value Function for Golf
• We can hit the ball farther with driver than with
putter, but with less accuracy

• Q*(s,driver) gives the value or using driver first, then
using whichever actions are best

21

22

Bellman Optimality Equation for V*

V∗ (s) = max
a∈A(s)

Qπ ∗

(s,a)

= max
a∈A(s)

E rt +1 + γ V∗(st +1) st = s, at = a{ }
= max

a∈A(s)
Ps ′ s

a

′ s
∑ Rs ′ s

a + γV ∗(′ s)[]

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

The relevant backup diagram:

 is the unique solution of this system of nonlinear equations.V∗

22

23

Bellman Optimality Equation for Q*

Q∗(s, a) = E rt +1 + γ max
′ a

Q∗ (′ s , ′ a) st = s,at = a{ }
= Ps ′ s

a Rs ′ s
a +γ max

′ a
Q∗(′ s , ′ a)[]

′ s
∑

The relevant backup diagram:

 is the unique solution of this system of nonlinear equations.Q*

23

Therefore, given , one-step-ahead search produces the
long-term optimal actions.

24

Why Optimal State-Value Functions are Useful

V∗

V∗

Any policy that is greedy with respect to is an optimal policy.

E.g., back to the gridworld:

24

25

What About Optimal Action-Value Functions?

Given , the agent does not even have to do a one-step-
ahead search:

Q*

π∗(s) = argmax
a∈A (s)

Q∗(s, a)

25

26

Solving the Bellman Optimality Equation
• Finding an optimal policy by solving the Bellman Optimality Equation

requires the following:

• accurate knowledge of environment dynamics;

• we have enough space and time to do the computation;

• the Markov Property.

• How much space and time do we need?

• polynomial in number of states (via dynamic programming
methods; Chapter 4),

• BUT, number of states is often huge (e.g., backgammon has about
10**20 states).

• We usually have to settle for approximations.

• Many RL methods can be understood as approximately solving the
Bellman Optimality Equation.

26

Average Reward MDPs

• In a discounted MDP, optimal policies depend on

• The most common alternative is to define return as:

• A policy is called gain-optimal if it optimizes
over all states

€

γ

€

ρπ (s) = lim
N→∞

1
N
E rt

t=1

N

∑










where is the reward received at step t starting in state
s and following policy π

€

rt

€

ρπ (s)

27

Average Reward cont.
• An MDP is unichain if all trajectories generated by all

policies end up in the same recurrent class of states

• In a unichain MDP, for all states s and s’

• Bias value, or relative value of s:

• A policy is bias-optimal if it maximizes this value over
all states

€

ρπ (s) = ρπ (′ s) = ρπ

€

V π (s) = lim
N→∞

E (rt
t=1

N

∑ −ρπ)










where is the reward
received at step t
starting in state s and
following policy π

€

rt

28

Gain-optimal vs. Bias-optimal

A B

100

–100

1

a1:

a2:

Both policies are gain optimal, but only a1 is bias optimal

29

Semi-Markov Decision Processes (SMDPs)

• Generalization of an MDP where there is a waiting
(or dwell) time in each state

• Transition probabilities generalize to:

• Bellman equations generalize, e.g. for a discrete time
SMDP:

€

P(′ s ,τ | s,a)€

τ

€

V *(s) = max
a∈A (s)

P(′ s ,τ | s,a) Rs ′ s
a + γτV *(′ s)[]

′ s ,τ
∑ where is now the amount of

discounted reward expected to
accumulate over the waiting time
in s upon doing a and ending up
in s’ €

Rs ′ s
a

30

31

Summary
• Agent-environment interaction

• States

• Actions

• Rewards

• Policy: stochastic rule for
selecting actions

• Return: the function of future
rewards agent tries to maximize

• Episodic and continuing tasks

• Markov Property

• Markov Decision Process

• Transition probabilities

• Expected rewards

• Value functions

• State-value function for a policy

• Action-value function for a policy

• Optimal state-value function

• Optimal action-value function

• Optimal value functions

• Optimal policies

• Bellman Equations

• The need for approximation

• Average reward MDPs

• Semi-Markov decision processes

31

